Сети связи следующего поколения
a65debd7

MPLS TE


Для решения задачи TE технология MPLS использует расширения протоколов маршрутизации, работающих на основе алгоритма состояния связей. Сегодня такие расширения стандартизованы для протоколов OSPF и IS-IS. Данные протоколы, в отличие от дистанционно-векторных протоколов, к которым относится, например, RIP, дают маршрутизатору полную топологическую информацию о сети. Их объявления содержат информацию о маршрутизаторах и сетях, а также о физических связях между ними. Каждая связь характеризуется текущим состоянием работоспособности и метрикой, в качестве которой используется величина, обратная пропускной способности канала.

Для решения задачи TE в протоколы OSPF и IS-IS включены новые типы объявлений для распространения по сети информации о номинальной и незарезервированной (доступной для потоков TE) пропускной способности каждой связи. Таким образом, ребра результирующего графа сети, создаваемого в топологической базе каждого маршрутизатора, будут маркированы этими двумя дополнительными параметрами (см. рис. 13.1).


Рис. 13.1.  Граф сети

Располагая таким графом, а также параметрами потоков, для которых нужно определить пути TE, маршрутизатор может найти рациональное решение, удовлетворяющее, например, одному из сформулированных выше ограничений на коэффициенты использования ресурсов сети, обеспечив тем самым ее сбалансированную загрузку. Для упрощения задачи оптимизации выбор путей для некоторого набора потоков может осуществляется по очереди, при этом в качестве ограничения выступает суммарная загрузка каждого ресурса сети. Обычно считается, что внутренней производительности маршрутизатора достаточно (в среднем) для обслуживания любого трафика, который способны принять интерфейсы маршрутизатора. Поэтому в качестве ограничений выступают только максимально допустимые значения коэффициентов загрузки каналов связи, устанавливаемые индивидуально или же имеющее общее значение. Решение задачи определения маршрута с учетом ограничений получило название Constrained-based Routing, а протокол OSPF с соответствующими расш ирениями – Constrained SPF, или CSPF.


Понятно, что поиск путей TE по очереди снижает качество решения – при одновременном рассмотрении всех потоков можно найти более рациональную загрузку ресурсов. В примере, показанном на рис. 13.2, ограничением является максимально допустимое значение коэффициента использования ресурсов, равное 0,65.

В варианте 1 решение было найдено при очередности рассмотрения потоков 1 –> 2 –> 3. Для первого потока был выбран путь A-B-C, так как в этом случае он, с одной стороны, удовлетворяет ограничению (все ресурсы вдоль пути – каналы A-B, A-C и соответствующие интерфейсы маршрутизаторов оказываются загруженными на 0,5/1,5 = 0,33), а с другой – обладает минимальной метрикой (65 + 65 = 130). Для второго потока также был выбран путь A-B-C, так как и в этом случае ограничение удовлетворяется – результирующий коэффициент использования оказывается равным (0,5 + 0,4)/1,5 = 0,6. Третий поток направляется по пути A-D-E-C и загружает ресурсы каналов A-D, D-E и E-C на 0,3 (метод расчета метрик канала был описан в предыдущей лекции).


Рис. 13.2.  Варианты загрузки ресурсов

Решение 1 можно назвать удовлетворительным, так как коэффициент использования любого ресурса в сети не превышает 0,6.

Однако существует лучший способ, представленный в варианте 2. Здесь по верхнему пути A-B-C были направлены потоки 2 и 3, а поток 1 – по нижнему пути A-D-E-C. Ресурсы верхнего пути оказываются загружены на 0,46, а нижнего – на 0,5, т. е. налицо более равномерная загрузка ресурсов, а максимальный коэффициент использования по всем ресурсам сети не превышает 0,5. Этот вариант может быть получен при одновременном рассмотрении всех трех потоков с учетом ограничения min (max Ki) или же при рассмотрении потоков по очереди в последовательности 2 –> 3 –> 1.

Тем не менее в производимом сегодня оборудовании применяется вариант MPLS TE с последовательным рассмотрением потоков. Он проще в реализации и ближе к стандартным для протоколов OSPF и IS-IS процедурам нахождения кратчайшего пути для одной сети назначения.



В технологии MPLS TE информация о найденном рациональном пути используется полностью – т. е. запоминается не только первый транзитный узел, как в основном режиме маршрутизации IP, а все промежуточные узлы пути вместе с начальным и конечным, т. е. маршрутизация производится от источника. Поэтому достаточно, чтобы поиском путей занимались только пограничные LSR сети, а внутренние – лишь поставляли им информацию о текущем состоянии сети, которая необходима для принятия решений. Такой подход обладает несколькими преимуществами по сравнению с распределенной моделью поиска пути, лежащей в основе стандартных протоколов маршрутизации IP:

  1. он позволяет использовать "внешние" решения, когда пути находятся какой-либо системой оптимизации сети в автономном режиме, а потом прокладываются в сети;
  2. каждый из пограничных LSR может работать по собственной версии алгоритма, в то время как при распределенном поиске на всех LSR необходим идентичный алгоритм, что усложняет построение сети с оборудованием разных производителей;
  3. такой подход разгружает внутренние LSR от работы по поиску путей.


После нахождения пути, независимо от того, найден он был пограничным LSR или внешней системой, его необходимо установить. Для этого в MPLS TE используется специальный протокол сигнализации, который умеет распространять по сети информацию о явном (explicit) маршруте. Сегодня в MPLS TE определено два таких протокола: RSVP с расширениями TE и CR-LDP (таблица 13.1).

При установлении нового пути в сообщении сигнализации наряду с последовательностью адресов пути указывается также и резервируемая пропускная способность. Каждый LSR, получив такое сообщение, вычитает запрашиваемую пропускную способность из пула свободной пропускной способности соответствующего интерфейса, а затем объявляет остаток в сообщениях протокола маршрутизации.

Таблица 13.1. Сравнение протоколов CR-LDP, RSVP-TECR-LDPRSVP-TE
Используемый транспортный протокол TCPИсходный IP
Надежность операторского классаНетДа
Поддержка трафика "много точек – точка"ДаДа
Поддержка вещательной рассылкиНетНет
Поддержка слияния LSPДаДа
Явная маршрутизацияСо строгими и нестрогими участками маршрутаСо строгими и нестрогими участками маршрута
Ремаршрутизация LSPДаДа, путем записи маршрута
Вытеснение потоков в LSPДа, на основе приоритетаДа, на основе приоритета
Средства безопасностиДаДа
Защита LSPДаДа
Состояние LSPЖесткоеНежесткое
Регенерация состояния LSPНе требуетсяПериодическая, по участкам
Резервирование совместно используемых ресурсовНетДа
Обмен параметрами трафикаДаДа
Управление трафикомВ прямом направленииВ обратном направлении
Авторизация пользователейНеявнаяЯвная
Индикация протокола уровня 3НетДа
Ограничения в зависимости от класса ресурсаДаНет

Содержание раздела